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LETTER TO THE EDITOR 

Finite-size scaling at an Ising tricritical point 

Paul D Beale 
Department of Theoretical Physics, 1 Keble Road, Oxford University, Oxford OX1 3NP, 
UK 

Received 30 January 1984 

Abstract. The tricriiical behaviour of a two-dimensional king model is investigated by use 
of a finite-size scaling analysis. The three leading scaling exponents and scaling fields are 
calculated. The exponents are in excellent agreement with conjectured values and Monte 
Carlo renormalisation group calculations. 

The tricritical behaviour of two-dimensional systems with Ising symmetries has been 
investigated by a number of authors. The following theoretical techniques have been 
applied to the problem: Monte Carlo simulations (Landau 1972), &-expansion renor- 
malisation group (Chang et al 1974, Stephen and McCauley 1973), real-space renor- 
malisation group (Neinhuis and Nauenberg 1976), conjectures based on the behaviour 
of q-state Potts models (Neinhuis et al 1979, 1980, den Nijs 1979, Pearson 1980, 
Neinhuis et a1 1980), Monte Carlo renormalisation group (Landau and Swendsen 
1981), exact solution of a model thought to be in the same universality class as a 
tricritical Ising model (Baxter 1980,1981, Huse 1982), and finite-size scaling (Rikvoldt 
et a1 1983). 

In this letter we report the results of a finite size scaling analysis of an Ising tricritical 
point. It is similar in approach to that taken by Rikvoldt et a1 but extends their 
calculation by calculating the three leading scaling exponents and the scaling fields at 
the tricritical point. 

The model used is a two-dimensional Ising model on a square lattice with anti- 
ferromagnetic nearest-neighbour bonds and ferromagnetic diagonal-neighbour bonds. 
The Hamiltonian is 

where si = * l ,  (ij) denotes nearest-neighbour pairs and (ij) denotes diagonal-neighbour 
pairs. The fields H and H, are unifoLm aBd staggered magnetic fields respectively. 
The quantity (-l) i  is unity on one J 2 ~ 4 2  sublattice and -1 on the other. In this 
work we will take J ,  = J2 = J. This model is exactly equivalent to a lattice gas with 
nearest-neighbour repulsion and next-nearest-neighbour attraction. 

The technique of finite-size scaling is based on the work (Fisher 1971, Fisher and 
Barber 1972, Barber 1983b) in which the critical behaviour of a large but finite system 
is considered. This idea was extended (Nightingale 1976) by applying the finite-size 
scaling hypothesis phenomenologically to systems which are infinite in one direction 
but finite along all others. The technique has been widely used to find the critical 
behaviour of two-dimensional systems (Nightingale 1982 and references therein). The 
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key idea is that the correlation length in a system with width L near criticality is given 
by 

SL/L% Q(LY1t) (2) 
where t = ( T  - T,)/ T, is the deviation from the critical point and Q is a universal 
scaling function. The exponent y1 is the inverse of the correlation length exponent U. 
At criticality the correlation lengths should obey 

5LIL = 5L'IL' (3) 

for different widths L and L'. The critical temperature is the temperature at which 
tL scales proportional to the width of the system. Furthermore the exponent y1 can 
be determined by 

By using this technique, the critical line in the T, H plane can be determined by 
sweeping in T at fixed H The correlation length is determined by the relation 

z = 1/1n(A1/IA,l) ( 5 )  

where A , ,  A, are the two largest eigenvalues of the Ising transfer marix (Nightingale 
1982). Strip widths of up to L = 12 are used in this calculation. The phase diagram 
is shown in figure 1.  There is a critical line with king critical behaviour extending 
from (T ,  H )  = (5.263,O.OO) to (2.41,3.927). Along the critical line the thermal 
exponent is y1 = 1.01 and the magnetic exponent (determined by applying a small 
staggered field and analysing the L dependence of the correlation length) is y 2 =  1.87 
in agreement with the exact values of y1 = 1 and y ,  = 1.875. Along the line from 
(T ,  H )  = (2.41,3.927) to (0.00,4.00) the model exhibits a first-order phase transition 
from an ordered antiferromagnetic state to the paramagnetic state. This is signalled 
in a finite-size scaling analysis by the appearance of a third eigenvalue, A 3 ,  which is 
asymptotically (in the limit L +  00) degenerate with A l  and A, (Berker and Fisher 1982, 
Derrida and Herrmann 1983, Cardy and Nightingale 1983). From this near degeneracy 

Tricritical 

4 - - - - - -__  Paramagnet I 

0 2 4 6 
T 

Figure 1. The phase diagram of the Ising antiferromagnet described by equation ( 1 ) .  The 
full line is a second-order Ising-like transition and the broken line is a first-order transition. 
The tricritical point is at T, = 2.41 k0.02, H, = 3.927 *0.004. 
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we can define a persistance length (Rikvoldt ef al 1982, Derrida and Herrmann 1983, 
Barber 1983a) 

i=  l/ln(Al/A3). (6) 
The point separating the first- and second-order lines is a tricritical point. At this 

point the system has three relevant scaling fields which we will denote t ,  h, h,. They 
correspond to temperature, uniform field and staggered field. At the tricritical point 
the correlation length of a finite-size system should scale like 

iL/ L = Q( LY1 t, LY2h,, Ly3 h).  (7) 
The fields f and h lie in the T, H plane and h, is in the direction of the staggered 
field. The tricritical point is located by finding the point where both tL and iL scale 
proportional to the width of the system. Figure 2 shows i L / L  ?gainst T alongA the 
transition line (which is determined by (3)). The points where t(L+2)/ ( L  + 2) = tL/ L 
determine successive estimates of the tricritical temperature T,. Extrapolations of 
these estimates give T,/ J = 2.41 f 0.02 and H,/ J = 3.927 f 0.04. The critical exponents 
are determined by using a method which simultaneously determines the scaling direc- 
tions and exponents (Barber 1983a, Derrida and Herrmann 1983). Equation (4) is 
applied at the successive estimates of the tricritical point except that the derivatives 
are taken in all directions, 8, about the tricritical point. The places where the y ( 8 ) ' s  
cross determine the scaling directions and exponents y1 and y3. This is shown in figure 
3. The t scaling direction is approximately parallel to the H axis and the h scaling 
direction is tangential to the critical line at the tricritical point. The exponent y3 can 
be determined independently by using a formula identical to (4) but replacing tL by 
iL and taking the derivatives parallel to the transition line (Barber 1983a, Derrida 
and Herrmann 1983). The exponent y2 is determined by applying a small staggered 
field and analysing the L dependence of the correlation length. The results obtained 
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Figure 2. The persistance length on the transition line near the tricritical point. The 
numbers denote the strip width. The arrows point to successive estimates of the tricritical 
temperature. 
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Figure 3. The effective exponent in direction 8 (measured in degrees) about the tricritical 
point. Derivatives were calculated using increments of AT =0.005 sin(O), AH = 
O.OOlcos(8). The full curve is derived from strip widths of 6 and 8. The broken curve is 
from strip widths of 8 and 10. The two crossing points are estimates of y1 and y3. The 
direction 8 = 0 is parallel to the H axis and 8 = -45 is approximately parallel to the 
transition line at the tricritical point. 

are presented in table 1 along with the results of previous calculations. The finite-size 
scaling results are in excellent agreement with the conjectures (Neinhuis et a1 1979, 
1980, den Nijs 1979, Pearson 1980) and the Monte Carlo renormalisation group 
(Landau and Swendsen 1981). Error estimates for the finite-size scaling results are 
not given due to the difficulty of extrapolation because of the sizeable corrections to 
scaling Monte Carlo renormalisation group calculations (Landau 1983) indicate that 
the leading correction to scaling exponent is approximately -0.3). A rough estimate 
of 1% to 2% uncertainty is reasonable for y, and y,. The value for the exponent y3 
is somewhat less certain. 

Table 1. 

Source Y1 Y2 Y3 

a 1.78 1.02 
b 1.85 0.65 
C 1.800 1.925 0.800 
d 1.80*0.02 1.931t0.01 0.84k0.05 
e 1.78 1.90 0.77 

(a) &-expansion renormalisation group (Chang et a[ 1974, Stephen and McCauley 1973). 
(b) Real-space renormalisation group (Neinhuis and Nauenberg 1976). 
(c) Conjecture (Neinhuis et a1 1979, 1980, den Nijs 1979, Pearson 1980, Baxter 1980, 
1981, Huse 1982). 
(d) Monte Carlo renormalisation group (Landau and Swendsen 1981). 
(e) Finite-size scaling (this work and Rikvoldt et a1 1983). 
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In conclusion, the finite-size scaling analysis of a two-dimensional Ising tricritical 
point gives scaling exponents in excellent agreement with conjectured values and 
Monte Carlo renormalisation group estimates. 

We wish to thank the SERC for support and acknowledge very helpful conversations 
with Julia Yeomans, Phil Duxbury, David Landau and Robin Stinchcombe. We also 
wish to thank John Hertz and NORDITA for hospitality shown during a stay in 
Copenhagen. 

Note added in proof. A similar calculation has recently been done by Herrmann (1984). His values for y 1  
and y s  agree with ours. 
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